157 research outputs found

    A comparison of CTD satellite-linked tags for large cetaceans - Bowhead whales as real-time autonomous sampling platforms

    Get PDF
    There is an increasing need for comprehensive oceanographic sampling, and taking advantage of marine mammal studies of movements and habitat use for augmenting spatial and temporal coverage, especially in remote and inaccessible areas, is an attractive approach. Oceanographic sampling instruments that transmit profiles of temperature and salinity (CTD) via satellite were deployed on bowhead whales Balaena mysticetus. A novel satellite-linked CTD tag (WC) was compared to an established design (SMRU). The two types of tags were deployed equally on nine bowhead whales in West Greenland. Both tag types used Argos for relaying data and locations, while the WC tag also provided Fastloc-GPS for more accurate locations. One whale carried both tag types. When comparing the two tag types deployed on the same whale, more complete data were obtained from the WC tag in terms of number of profiles, locations and transmissions received, although placement of the tag on the back of the whale and antenna position may have affected some of these parameters. Why transmissions terminated is difficult to determine, however, physical loss of the tag from the whale and mechanical damage to the antenna are the most likely; none of the tags failed because of battery exhaustion. Although, differences in performance of the two tag types were found, we conclude that both satellite-linked CTD tag types deployed on large cetaceans can provide high resolution oceanographic profiles at times and in areas where traditional methods for collecting oceanographic data are logistically difficult and prohibitively expensive.publishedVersio

    Habitat Use of Ringed Seals (Phoca hispida) in the North Water Area (North Baffin Bay)

    Get PDF
    In conjunction with the International North Water Polynya Study in Smith Sound (northern Baffin Bay) in 1997-99, we examined the area use and diving activity of 23 ringed seals (Phoca hispida) that had been equipped with satellite transmitters on the Greenland side of the North Water (NOW) area. The study covered the period 12 August 1996-30 June 1999. Contact with the seals was maintained for an average of 108 days (range: 8-332 days). Four seals emigrated from the NOW area. During all seasons, the seals that remained in the area spent about 90% of the time in coastal (< 100 m deep) waters in the eastern parts of the NOW area. The total area visited by the seals during the open-water season ranged between 10 300 km² (1996) and 18 500 km² (1998), corresponding to about 15% to 25% of the entire NOW area. In winter, the total area visited by the seals varied between 2500 km² (1996-97) and 7000 km² (1998-99), and in spring, between 800 km² (1999) and 2100 km² (1997). Individual movement was significantly greater during the open-water season than during winter and spring. Maximum dive depths recorded were over 500 m (maximum for the instrument) outside and 376 m inside the NOW, for a 96 kg male seal. Non-adult seals spent about 99% of the time in waters less than 100 m deep, and more than 92% of the time in the upper 50 m. In contrast, adults tended to spend more time at greater depths. The study indicated that (1) the ringed seals took advantage of the generally lighter ice conditions in the eastern NOW, and (2) that non-adults likely exploited ice-associated amphipods and young polar cod (Boreogadus saida), and adults, mainly older polar cod and cephalopods taken at greater depths.Conjointement avec l'étude internationale sur la polynie de l'Eau du Nord dans le détroit de Smith (partie nord de la baie de Baffin) menée de 1997 à 1999, on a examiné l'utilisation de cette zone et l'activité de plongée de 23 phoques annelés (Phoca hispida) munis d'émetteurs-satellite du côté groenlandais de la région de l'Eau du Nord («NOW»). L'étude a couvert la période allant du 12 août 1996 au 30 juin 1999. Le contact avec les phoques a été maintenu pendant une moyenne de 108 jours (étendue: 8-332 jours). Quatre phoques ont émigré de la zone NOW. Durant toutes les saisons, les phoques qui restaient dans la zone passaient environ 90% du temps dans des eaux côtières (profondeur < 100 m) dans les secteurs orientaux de NOW. La superficie totale visitée par les phoques durant la saison d'eau libre allait de 10 300 km² (1996) à 18 500 km² (1998), correspondant à environ 15 à 25% de toute la zone NOW. En hiver, l'étendue totale fréquentée par les phoques allait de 2500 km² (1996-1997) à 7000 km² (1998-1999), et au printemps, de 800 km² (1999) à 2100 km² (1997). Les déplacements individuels étaient de beaucoup plus grands durant la saison d'eau libre qu'au cours de l'hiver et du printemps. Les profondeurs maximales de plongée enregistrées dépassaient 500 m (limite de l'instrument) à l'extérieur de la zone NOW et 376 m à l'intérieur, pour un phoque mâle de 96 kg. Les phoques non adultes passaient environ 99% du temps dans des eaux à une profondeur ne dépassant pas 100 m, et plus de 92% du temps dans les 50 m supérieurs. En revanche, les adultes avaient tendance à passer plus de temps à de plus grandes profondeurs. L'étude révèle 1) que les phoques annelés tiraient parti du fait qu'il y avait moins de glace dans la partie orientale de NOW, et 2) que, selon toute vraisemblance, les non-adultes exploitaient amphipodes et jeune morue polaire (Boreogadus saida) associés à la glace, les adultes se nourrissant surtout de morue polaire plus âgée et de céphalopodes prélevés à de plus grandes profondeurs

    First Confirmed Record of Grey Seals in Greenland

    Get PDF
    The presence of grey seals has never before been confirmed in Greenland, but on 30 August 2009 a grey seal was photographed near shore in Southeast Greenland (59˚53′ N, 43˚28′ W). The seal was observed within a small group of islands that hosts a harbour seal colony. The following day, a seal that might be a young grey seal was photographed at the same location. Information from Inuit hunters suggests that grey seals periodically visit Greenland, but the pictures taken in summer 2009 are the first solid proof of this seal species in Greenland.La présence de phoques gris n’avait jamais été confirmée au Groenland, mais le 30 août 2009, un phoque gris a été photographié près de la côte sud-est du Groenland (59˚53′ N, 43˚28′ O). Le phoque a été observé au sein d’un petit groupement d’îles où se tient une colonie de phoques communs. Le lendemain, un phoque qui était peut-être un jeune phoque gris a été photographié au même endroit. D’après les chasseurs inuits, les phoques gris se rendraient périodiquement au Groenland, mais les photographies prises à l’été 2009 constituent les premières preuves tangibles de la présence de cette espèce de phoque au Groenland

    Heart rate and startle responses in diving, captive harbour porpoises (Phocoena phocoena) exposed to transient noise and sonar

    Get PDF
    Anthropogenic noise can alter marine mammal behaviour and physiology, but little is known about cetacean cardiovascular responses to exposures, despite evidence that acoustic stressors, such as naval sonars, may lead to decompression sickness. Here, we measured heart rate and movements of two trained harbour porpoises during controlled exposure to 6–9 kHz sonar-like sweeps and 40 kHz peak-frequency noise pulses, designed to evoke acoustic startle responses. The porpoises initially responded to the sonar sweep with intensified bradycardia despite unaltered behaviour/ movement, but habituated rapidly to the stimuli. In contrast, 40 kHz noise pulses consistently evoked rapid muscle flinches (indicative of startles), but no behavioural or heart rate changes. We conclude that the autonomous startle response appears decoupled from, or overridden by, cardiac regulation in diving porpoises, whereas certain novel stimuli may motivate oxygen-conserving cardiovascular measures. Such responses to sound exposure may contribute to gas mismanagement for deeper-diving cetaceans

    Ultra-high foraging rates of harbor porpoises make them vulnerable to anthropogenic disturbance

    Get PDF
    This study was partly funded by the German Federal Agency for Nature Conservation (BfN) under the contract Z1.2-5330/2010/14 and the BfN-Cluster 7 “Effects of underwater noise on marine vertebrates.” D.M.W. and P.T.M. were also supported by the Danish National Research Foundation (FNU) and the Carlsberg Foundation, and M.J. was also supported by the Marine Alliance for Science and Technology Scotland (MASTS) and by a Marie Curie-Sklodowska award.The question of how individuals acquire and allocate resources to maximize fitness is central in evolutionary ecology. Basic information on prey selection, search effort, and capture rates are critical for understanding a predator’s role in its ecosystem and for predicting its response to natural and anthropogenic disturbance. Yet, for most marine species, foraging interactions cannot be observed directly. The high costs of thermoregulation in water require that small marine mammals have elevated energy intakes compared to similar-sized terrestrial mammals [1]. The combination of high food requirements and their position at the apex of most marine food webs may make small marine mammals particularly vulnerable to changes within the ecosystem [2–4], but the lack of detailed information about their foraging behavior often precludes an informed conservation effort. Here, we use high-resolution movement and prey echo recording tags on five wild harbor porpoises to examine foraging interactions in one of the most metabolically challenged cetacean species. We report that porpoises forage nearly continuously day and night, attempting to capture up to 550 small (3–10 cm) fish prey per hour with a remarkable prey capture success rate of >90%. Porpoises therefore target fish that are smaller than those of commercial interest, but must forage almost continually to meet their metabolic demands with such small prey, leaving little margin for compensation. Thus, for these “aquatic shrews,” even a moderate level of anthropogenic disturbance in the busy shallow waters they share with humans may have severe fitness consequences at individual and population levels.PostprintPeer reviewe

    Implications of porpoise echolocation and dive behaviour on passive acoustic monitoring

    Get PDF
    Funding: The post-doctoral position for J.D.J.M. was funded by a FNU – Danish Natural Science Research Council grant to P.T.M. This study was also funded by the German Federal Agency for Nature Conservation via the grants “Effects of underwater noise on marine vertebrates” (Cluster 7, Z1.2-53302/2010/14) and “Under Water Noise Effects—UWE” (Project No. FKZ 3515822000). The contribution by T.A.M. was funded under the ACCURATE project (U.S. Navy Living Marine Resources Program, Contract No. N3943019C2176) and CEAUL (funded by FCT—Fundação para a Ciência e a Tecnologia, Portugal, through Project No. UIDB/00006/2020).Harbour porpoises are visually inconspicuous but highly soniferous echolocating marine predators that are regularly studied using passive acoustic monitoring (PAM). PAM can provide quality data on animal abundance, human impact, habitat use, and behaviour. The probability of detecting porpoise clicks within a given area ( P ̂ ) is a key metric when interpreting PAM data. Estimates of P ̂ can be used to determine the number of clicks per porpoise encounter that may have been missed on a PAM device, which, in turn, allows for the calculation of abundance and ideally non-biased comparison of acoustic data between habitats and time periods. However, P ̂ is influenced by several factors, including the behaviour of the vocalising animal. Here, the common implicit assumption that changes in animal behaviour have a negligible effect on P ̂ between different monitoring stations or across time is tested. Using a simulation-based approach informed by acoustic biologging data from 22 tagged harbour porpoises, it is demonstrated that porpoise behavioural states can have significant (up to 3× difference) effects on P ̂ . Consequently, the behavioural state of the animals must be considered in analysis of animal abundance to avoid substantial over- or underestimation of the true abundance, habitat use, or effects of human disturbance.Publisher PDFPeer reviewe

    Marine Strategy Framework Directive - Task Group 11 Report Underwater Noise and Other Forms of Energy

    Get PDF
    The Marine Strategy Framework Directive (2008/56/EC) (MSFD) requires that the European Commis-sion (by 15 July 2010) should lay down criteria and methodological standards to allow consistency in approach in evaluating the extent to which Good Environmental Status (GES) is being achieved. ICES and JRC were contracted to provide scientific support for the Commission in meeting this obligation. A total of 10 reports have been prepared relating to the descriptors of GES listed in Annex I of the Directive. Eight reports have been prepared by groups of independent experts coordinated by JRC and ICES in response to this contract. In addition, reports for two descriptors (Contaminants in fish and other seafood and Marine Litter) were written by expert groups coordinated by DG SANCO and IFREMER respectively. A Task Group was established for each of the qualitative Descriptors. Each Task Group consisted of selected experts providing experience related to the four marine regions (the Baltic Sea, the North-east Atlantic, the Mediterranean Sea and the Black Sea) and an appropriate scope of relevant scien-tific expertise. Observers from the Regional Seas Conventions were also invited to each Task Group to help ensure the inclusion of relevant work by those Conventions. This is the report of Task Group 11 Underwater noise and other forms of energy.JRC.DDG.H.5-Rural, water and ecosystem resource

    Defining management units for cetaceans by combining genetics, morphology, acoustics and satellite tracking

    Get PDF
    Managing animal units is essential in biological conservation and requires spatial and temporal identification of such units. Since even neighbouring populations often have different conservation status and face different levels of anthropogenic pressure, detailed knowledge of population structure, seasonal range and overlap with animals from neighbouring populations is required to manage each unit separately. Previous studies on genetic structure and morphologic separation suggests three distinct populations of harbour porpoises with limited geographic overlap in the North Sea (NS), the Belt Sea (BS) and the Baltic Proper (BP) region. In this study, we aim to identify a management unit for the BS population of harbour porpoises. We use Argos satellite data and genetics from biopsies of tagged harbour porpoises as well as acoustic data from 40 passive acoustic data loggers to determine management areas with the least overlap between populations and thus the least error when abundance and population status is estimated. Discriminant analysis of the satellite tracking data from the BS and NS populations showed that the best fit of the management unit border during the summer months was an east–west line from Denmark to Sweden at latitude 56.95°N. For the border between BS and BP, satellite tracking data indicate a sharp decline in population density at 13.5°E, with 90% of the locations being west of this line. This was supported by the acoustic data with the average daily detection rate being 27.5 times higher west of 13.5°E as compared to east of 13.5°E. By using this novel multidisciplinary approach, we defined a management unit for the BS harbour porpoise population. We recommend that these boundaries are used for future monitoring efforts of this population under the EU directives. The boundaries may also be used for conservation efforts during the summer months, while seasonal movements of harbour porpoises should be considered during winter

    Phylogenomic insights to the origin and spread of phocine distemper virus in European harbour seals in 1988 and 2002

    Get PDF
    The study was supported by the Villum Foundation, the Danish Ministry of the Environment, the Volkswagen Foundation (Az.: 89911) and the BONUS programme BaltHealth, which has received funding from BONUS (Art. 185), funded jointly by the EU, Innovation Fund Denmark (grants 6180-00001B and 6180-00002B), Forschungszentrum Jülich GmbH, German Federal Ministry of Education and Research (grant FKZ 03F0767A), Academy of Finland (grant 311966) and Swedish Foundation for Strategic Environmental Research (MISTRA).The 1988 and 2002 phocine distemper virus (PDV) outbreaks in European harbour seals Phoca vitulina are among the largest mass mortality events recorded in marine mammals. Despite its large impact on harbour seal population numbers, and 3 decades of studies, many questions regarding the spread and temporal origin of PDV remain unanswered. Here, we sequenced and analysed 7123 bp of the PDV genome, including the coding and non-coding regions of the entire P, M, F and H genes in tissues from 44 harbour seals to shed new light on the origin and spread of PDV in 1988 and 2002. The phylogenetic analyses trace the origin of the PDV strain causing the 1988 outbreak to between June 1987 and April 1988, while the origin of the strain causing the 2002 outbreak can be traced back to between July 2001 and April 2002. The analyses further point to several independent introductions of PDV in 1988, possibly linked to a southward mass immigration of harp seals in the winter and spring of 1987−1988. The vector for the 2002 outbreak is unknown, but the epidemiological analyses suggest the subsequent spread of PDV from the epicentre in the Kattegat, Denmark, to haul-out sites in the North Sea through several independent introductions.PostprintPeer reviewe
    corecore